๐ŸŽ‰ New Year & Pongal Festival Special Offer! Get 50% Off on All Courses ๐ŸŽ‰

Need Help? call us free

+91 63029 64834

Offline / Online Job-Oriented Programs

GRADUATES / FINAL YEAR / ANY BRANCH OR DEGREE / CAREER GAP

Learn the code from expert trainers

Our trainers have over 15+ years of industry experience, bringing extensive knowledge and expertise to our training programs.

No 1 Training with Trainers Top MNCs

Amazon, Google, Microsoft, and Infosys...

Our trainers are working in top MNC Companies

SIVASOFT TECHNOLOGIES PRIVATE LIMITED - Indiaโ€™s Leading Classroom and Online Training Company (2012-)





๐Ÿš€Online Master DATA ANALYST (Power BI) TRAINING COURSE

Group Training Fee: โ‚น40,000/- โžก๏ธ Offer: โ‚น20,000/-

One-On-One Training Fee: โ‚น1,00,000/- โžก๏ธ Offer: โ‚น50,000/-

Duration: 6 Months

๐ŸŽ“ Eligibility: Final Year / Any Graduates / Career Gap

๐Ÿ‘จโ€๐Ÿซ Trainer (Completed 80+ Batches): Mr.Mansur (10+Yrs of Exp)

๐ŸŒŸ Offer: Valid only for 7 days

โฐ Daily: 1 hr Live Class

๐Ÿข 250+ Companies are Hiring from SivaSoft

๐ŸŒ Website: https://www.sivasoft.in

๐Ÿ“š Lifetime: Video Access

๐Ÿ”— Resume Preparation, LinkedIn Profile Creation

๐ŸŽ“ Free Course Completion Certificate

๐Ÿ“ Free Internship Certificate

๐Ÿ’ผ 100% Placement Support Until You Get a Job

๐Ÿ’ธ Salary Range: 2.5 โ€“ 60 LPA

๐ŸŒ Real-time Environment Terminology

๐Ÿ’ก Tips and Tricks to Survive in Companies

โœจ We offer One-on-One Demo Sessions to facilitate better interaction between students and trainers, ensuring all doubts and confusions are thoroughly clarified.

Course Curriculum

  • 1. Python
  • 2. Power BI
  • 3. SQL
  • 4. Excel
  • 5. Latest gen AI tools
  • 6. ChatGPT & CoPilot
1. Python:
  • 1. Introduction to Python for Data Analysis
    • Overview of Python and Its Applications in Data Analysis
    • Installing Python and IDEs (Jupyter Notebook, VS Code, PyCharm)
    • Python Basics
      • Syntax, Variables, and Data Types
      • Input and Output Operations
      • Control Structures: Conditional Statements and Loops
  • 2. Python Data Structures
    • Lists
      • Creating, Accessing, and Modifying Lists
      • List Comprehensions
    • Tuples and Sets
      • Immutability and Use Cases
      • Set Operations and Membership Testing
    • Dictionaries
      • Key-Value Pairs and Operations
      • Dictionary Comprehensions
  • 3. Working with Python Libraries for Data Analysis
    • NumPy:
      • Introduction to Arrays and Their Applications
      • Array Operations: Indexing, Slicing, and Reshaping
      • Mathematical and Statistical Operations on Arrays
    • Pandas:
      • Introduction to DataFrames and Series
      • Reading and Writing Data from Various Formats (CSV, Excel, SQL)
      • Data Cleaning: Handling Missing Values and Duplicates
      • Data Manipulation: Merging, Joining, and Concatenating
      • Grouping and Aggregation
    • Matplotlib and Seaborn:
      • Creating Basic Plots (Line, Bar, Scatter)
      • Customizing Plots (Titles, Labels, Legends)
      • Advanced Visualization Techniques with Seaborn
      • Heatmaps, Pairplots, and Boxplots
  • 4. Data Cleaning and Preparation
    • Handling Missing Data
      • Imputation Techniques
      • Dropping Null Values
    • Data Transformation
      • Scaling and Normalizing Data
      • Encoding Categorical Variables
    • Working with Dates and Times
      • Parsing and Formatting Dates
      • Handling Time Series Data
  • 5. Exploratory Data Analysis (EDA)
    • Summary Statistics
      • Mean, Median, Mode, and Standard Deviation
      • Quantiles and Percentiles
    • Data Visualization for EDA
      • Histograms and Distribution Plots
      • Scatter and Pair Plots
      • Correlation Matrix and Heatmaps
  • 6. Advanced Data Analysis Techniques
    • Feature Engineering
      • Creating New Features
      • Feature Selection Techniques
    • Statistical Analysis
      • Hypothesis Testing
      • ANOVA and Chi-Square Tests
      • Correlation and Covariance
  • 7. Introduction to Machine Learning
    • Supervised Learning
      • Linear Regression and Logistic Regression
      • Decision Trees and Random Forest
    • Unsupervised Learning
      • Clustering Algorithms (K-Means, Hierarchical)
      • Dimensionality Reduction with PCA
    • Evaluation Metrics
      • Accuracy, Precision, Recall, and F1-Score
      • Confusion Matrix and ROC-AUC
  • 8. Automating Tasks with Python
    • Introduction to Automation
      • Reading and Writing Files (CSV, Excel, JSON)
      • Automating Email and Report Generation
    • Web Scraping
      • Introduction to BeautifulSoup
      • Fetching Data from Websites
      • Handling Dynamic Web Pages with Selenium
  • 9. Working with Databases
    • Introduction to SQL with Python
      • Connecting Python to Databases
      • Performing CRUD Operations with SQLAlchemy
    • Using Pandas with SQL
      • Reading Data from Databases into DataFrames
      • Writing DataFrames Back to Databases
  • 10. Real-World Projects
    • Customer Segmentation Analysis
    • Sales Forecasting with Time Series Data
    • Market Basket Analysis
    • Creating Dashboards with Matplotlib and Seaborn
    • Building an End-to-End Data Analysis Pipeline
2. Power BI
  • Module 1: SQL SERVER INTRODUCTION
    • Data, Databases and RDBMS Software
    • Database Types: OLTP, DWH, OLAP
    • Microsoft SQL Server Advantages, Use
    • Versions and Editions of SQL Server
    • SQL: Purpose, Real-time Usage Options
    • SQL versus Microsoft T-SQL [MSSQL]
    • Microsoft SQL Server - Career Options
    • SQL Server Components and Usage
    • Database Engine Component and OLTP
    • BI Components, Data Science Components
    • ETL, MSBI and Power BI Components
    • Course Plan, Concepts, Resume, Project
    • 24 x 7 Online Labs for Remote DB Access
    • Software Installation Pre-Requisites
  • Module 2: Introduction to Power BI
    • Power BI Job Roles in Real-time
    • Power BI Data Analyst Job Roles
    • Business Analyst - Job Roles
    • Power BI Developer - Job Roles
    • Power BI for Data Scientists
    • Comparing MSBI and Power BI
    • Comparing Tableau and Power BI
    • MCSA 70-778, MCSA 70-779 Exam
    • Types of Reports in Real-World
    • Interactive & Paginated Reports
    • Analytical & Mobile Reports
    • Data Sources Types in Power BI
    • Power BI Licensing Plans - Types
    • Power BI Training : Lab Plan
    • Power BI Dev & Prod Environments
    • Understanding the Power BI Tools
    • Installing Power BI & Connecting to Data
    • The "Locale" used in the curriculum
    • Working with the Query Editor
    • Working with the Data Model and Creating a Visualization
  • Module 3: Basic Report Design
    • Power BI Desktop Installation
    • Data Sources & Visual Types
    • Canvas, Visualizations and Fields
    • Get Data and Memory Tables
    • In-Memory xvelocity Database
    • Table and Tree Map Visuals
    • Format Button and Data Labels
    • Legend, Category and Grid
    • PBIX and PBIT File Formats
    • Visual Interaction, Data Points
    • Disabling Visual Interactions
    • Edit Interactions - Format Options
    • SPOTLIGHT & FOCUSMODE
    • CSV and PDF Exports. Tooltips
    • Power BI Ecosystem, Architecture
  • Module 4: Visual Sync, Grouping
    • Slicer Visual: Real-time Usage
    • Orientation, Selection Properties
    • Single & Multi Select, CTRL Options
    • Slicer: Number, Text and Date Data
    • Slicer List and Slicer Dropdowns
    • Visual Sync Limitations with Slicer
    • Disabling Slicers, Clear Selections
    • Grouping: Real-time Use, Examples
    • List Grouping and Binning Options
    • Grouping Static / Fixed Data Values
    • Grouping Dynamic / Changing Data
    • Bin Size and Bin Limits (Max, Min)
    • Bin Count and Grouping Options
    • Grouping Binned Data, Classification
  • Module 5: Hierarchies, Filters
    • Creating Hierarchies in Power BI
    • Independent Drill-Down Options
    • Dependent Drill-Down Options
    • Conditional Drilldowns, Data Points
    • Drill Up Buttons and Operations
    • Expand & Show Next Level Options
    • Dynamic Data Drills Limitations
    • Show Data and See Records
    • Filters: Types and Usage in Real-time
    • Visual Filter, Page Filter, Report Filter
    • Basic, Advanced and TOP N Filters
    • Category and Summary Level Filters
    • DrillThru Filters, Drill Thru Reports
    • Keep All Filters Options in Drill Thru
    • Cross Report Filters, Include, Exclude
  • Module 6: Bookmarks, Azure, Modeling
    • Drill-thru Filters, Page Navigations
    • Bookmarks: Real-time Usage
    • Bookmarks for Visual Filters
    • Bookmarks for Page Navigations
    • Selection Pane with Bookmarks
    • Buttons, Images with Actions
    • Buttons, Actions and Text URLs
    • Bookmarks View & Selection Pane
    • OLTP Databases, Big Data Sources
    • Azure Database Access, Reports
    • Import & Direct Query with Power BI
    • SQL Queries and Enter Data
    • Data Modelling: Currency, Relations
    • Summary, Format, Synonyms
    • Web View & Mobile View in PBI
  • Module 7: Visualization Properties
    • Stacked Charts and Clustered Charts
    • Line Charts, Area Charts, Bar Charts
    • 100% Stacked Bar & Column Charts
    • Map Visuals: Tree, Filled, Bubble
    • Cards, Funnel, Table, Matrix
    • Scatter Chart: Play Axis, Labels
    • Series Clusters & Selections
    • Waterfall Chart and ArcGIS Maps
  • Module 8: Power Query Level 1
    • Power Query M Language Purpose
    • Power Query Architecture and ETL
    • Data Types, Literals and Values
    • Power Query Transformation Types
    • Table & Column Transformations
    • Text & Number Transformations
    • Date, Time and Structured Data
    • List, Record and Table Structures
    • let, source, in statements @ M Lang
    • Power Query Functions, Parameters
    • Invoke Functions, Execution Results
    • Get Data, Table Creations and Edit
    • Merge and Append Transformations
    • Join Kinds, Advanced Editor, Apply
    • ETL Operations with Power Query
  • Module 9: Power Query Level 2
    • Query Duplicate, Query Reference
    • Group By and Advanced Options
    • Aggregations with Power Query
    • Transpose, Header Row Promotion
    • Reverse Rows and Row Count
    • Data Type Changes & Detection
    • Replace Columns: Text, NonText
    • Replace Nulls: Fill Up, Fill Down
    • PIVOT, UNPIVOT Transformations
    • Move Column and Split Column
    • Extract, Format and Numbers
    • Date & Time Transformations
    • Deriving Year, Quarter, Month, Day
    • Add Column: Query Expressions
    • Query Step Inserts and Step Edits
  • Module 10: Power Query Level 3
    • Creating Parameters in Power Query
    • Parameter Data Types, Default Lists
    • Static/Dynamic Lists For Parameters
    • Removing Columns and Duplicates
    • Convert Tables to List Queries
    • Linking Parameters to Queries
    • Testing Parameters and PBI Canvas
    • Multi-Valued Parameter Lists
    • Creating Lists in Power Query
    • Converting Lists to Table Data
    • Advanced Edits and Parameters
    • Data Type Conversions, Expressions
    • Columns From Examples, Indexes
    • Conditional Columns, Expressions
  • Module 11: DAX Functions - Level 1
    • DAX: Importance in Real-Time
    • Real-world usage of Excel, DAX
    • DAX Architecture, Entity Sets
    • DAX Data Types, Syntax Rules
    • DAX Measures and Calculations
    • ROW Context and Filter Context
    • DAX Operators, Special Characters
    • DAX Functions, Types in Real-Time
    • Vertipaq Engine, DAX Cheat Sheet
    • Creating, Using Measures with DAX
    • Creating, Using Columns with DAX
    • Quick Measures and Summaries
    • Validation Errors, Runtime Errors
    • SUM, AVERAGEX, KEEPFILTERS
    • Dynamic Expressions, IF in DAX
  • Module 12: DAX Functions - Level 2
    • Data Modelling Options in DAX
    • Detecting Relations for DAX
    • Using Calculated Columns in DAX
    • Using Aggregated Measures in DAX
    • Working with Facts & Measures
    • Modelling: Missing Relations
    • Modelling: Relation Management
    • CALCULATE Function Conditions
    • CALCULATE & ALL Member Scope
    • RELATED & COUNTROWS in DAX
    • Entity Sets and Slicing in DAX
    • Dynamic Expressions, RETURN
    • Date, Time and Text Functions
    • Logical, Mathematical Functions
    • Running Total & EARLIER Function
  • Module 13: DAX Functions Level 3
    • Connection with CSV, MS Access
    • AVERAGEX and AVERAGE in DAX
    • KEEPFILTERS and CALCULATE
    • COUNTROWS, RELATED, DIVIDE
    • PARALLELPERIOD, DATEDADD
    • CALCULATE & PREVIOUSMONTH
    • USERELATIONSHIP, DAX Variables
    • TOTALYTD , TOTALQTD
    • DIVIDE, CALCULATE, Conditions
    • IF..ELSE..THEN Statement
    • SELECTEDVALUE, FORMAT
    • SUM, DATEDIFF Examples in DAX
    • TODAY, DATE, DAY with DAX
    • Time Intelligence Functions โ€“ DAX
  • Module 14: Power BI Cloud - 1
    • Power BI Service Architecture
    • Power BI Cloud Components, Use
    • App Workspaces, Report Publish
    • Reports & Related Datasets Cloud
    • Creating New Reports in Cloud
    • Report Publish and Report Uploads
    • Dashboards Creation and Usage
    • Adding Tiles to Dashboards
    • Pining Visuals and Report Pages
    • Visual Pin Actions in Dashboards
    • LIVE Page Interaction in Dashboard
    • Adding Media: Images, Custom Links
    • Adding Chs and Embed Links
    • API Data Sources, Streaming Data
    • Streaming Dataset Tiles (REST API)
  • Module 15: Power BI Cloud - 2
    • Dashboards Actions, Report Actions
    • DataSet Actions: Create Report
    • Share, Metrics and Exports
    • Mobile View & Dashboard Themes
    • Q & A [Cortana] and Pin Visuals
    • Export, Subscribe, Subscribe
    • Favorite, Insights, Embed Code
    • Featured Dashboards and Refresh
    • Gateways Configuration, PBI Service
    • Gateway Types, Cloud Connections
    • Gateway Clusters, Add Data Sources
    • Data Refresh: Manual, Automatic
    • PBIEngw Service, ODG Logs, Audits
    • DataFlows, Power Query Expressions
    • Adding Entities and JSON Files
  • Module 16: Excel & RLS
    • Import and Upload Options in Excel
    • Excel Workbooks and Dashboards
    • Datasets in Excel and Dashboards
    • Using Excel Analyzer in Power BI
    • Using Excel Publisher in PBI Cloud
    • Excel Workbooks, PINS in Power BI
    • Excel ODC Connections, Power Pivot
    • Row Level Security (RLS) with DAX
    • Need for RLS in Power BI Cloud
    • Data Modeling in Power BI Desktop
    • DAX Roles Creation and Testing
    • Adding Power BI Users to Roles
    • Custom Visualizations in Cloud
    • Histogram, Gantt Chart, Infographics
  • Module 17: Report Server, RDL
    • Need for Report Server in PROD
    • Install, Configure Report Server
    • Report Server DB, Temp Database
    • Web service URL, Webportal URL
    • Creating Hybrid Cloud with Power BI
    • Using Power BI DesktopRS
    • Uploading Interactive Reports
    • Report Builder For Report Server
    • Report Builder For Power BI Cloud
    • Designing Paginated Reports (RDL)
    • Deploy to Power BI Report Server
    • Data Source Connections, Report
    • Power BI Report Server to Cloud
    • Tenant IDs Generation and Use
    • Mobile Report Publisher, Usage
  • Module 18: PowerApp
    • Overview
    • Basic Power App Concept
    • Canvas Apps | Navigation | Customization
    • Contents (Galleries, Data Cards, Forms, Triggers, Functions & Formulas, Edit Forms, Text Boxes)
  • Module 19: Power BI Service & Power BI Mobile
    • Why Power BI Service?
    • Comparison Power BI Free & Premium
    • Logging into Power BI Service
    • Interface overview
    • Importing data from Desktop to Service
    • Dataset menu
    • Working on reports
    • Dashboard overview
    • Workspace & Gateways
    • Installing Gateways - Personal & On-premise
    • Working alone or collaborating with colleagues
    • Collaborating in App Workspace
    • Sharing the results
    • Publishing the app
    • Content packs from online services
    • Power BI Mobile Overview
    • Excluding dataset from sharing
  • Module 20: Power BI and Excel Together
    • Options for Publishing from Excel
    • Pin Excel Elements to Power BI
    • Analyze in Excel (Power BI Pro or Premium)
    • Excel Publish: Upload and Export to Power BI
    • Sharing Published Excel Dashboards (Power BI Pro or Premium)
  • Module 21: Real-Time Project
    • Project Requirement Analysis
    • Implementing SDLC Phases
    • Requirement Gathering, FSA
  • Phase 1:
    • Report Design
    • Visualizations
    • Properties, Analytics and Formatting
  • Phase 2:
    • Modelling
    • Power Query
    • Dynamic Connections
    • Azure DB
    • Parameters and M Lang Scripts
  • Phase 3:
    • DAX Requirements, Analysis
    • Cloud and Report Server
    • Project FAQs and Solutions
3. Microsoft SQL Server Course
Course Overview

Microsoft SQL Server is a leading Relational Database Management System (RDBMS) in the Microsoft ecosystem, ideal for data storage and retrieval in both desktop and web applications.

Course Objectives
  • Master SQL (Structured Query Language) for database management.
  • Design and manage databases using Data Definition Language (DDL) statements.
  • Perform basic CRUD operations with Data Manipulation Language (DML) statements.
  • Develop and execute stored procedures, functions, triggers, cursors, and indexes.
Prerequisites
  • Basic familiarity with Windows Operating System.
  • Suitable for beginners aiming to start a career in Information Technology.
Course Modules
  • Module 1: Basic Database Concepts
    • What is Data, Field, Record, and Database?
    • Limitations of File Management Systems.
    • DBMS Basics and Advantages.
    • Relational DBMS and Client-Server Architecture.
  • Module 2: Entity-Relationship (E-R) Modeling
    • Identifying Entities, Attributes, and Relationships.
    • Drawing E-R Diagrams.
    • Converting E-R Diagrams into Relational Schemas.
  • Module 3: Normalization
    • Understanding Normalization and its Benefits.
    • Practical Examples: 1NF, 2NF, 3NF.
  • Module 4: SQL Server Overview
    • SQL Server History and Editions.
    • Features, Components, and Management Studio.
    • Understanding System Databases.
  • Module 5: Introduction to SQL
    • Types of SQL Statements (DDL, DML, DQL, DCL, TCL).
    • Creating Databases and Understanding Data Types.
    • Exploring DDL Statements.
  • Module 6: DDL and DML Operations
    • Creating, Altering, and Dropping Tables.
    • Insert, Update, Delete, and Truncate Statements.
  • Module 7: Querying with DQL
    • Writing SELECT Statements with Keywords (TOP, DISTINCT).
    • Using WHERE Clause, Operators, and Subqueries.
    • Sorting Data with ORDER BY.
  • Module 8: Aggregate Functions
    • Using COUNT, SUM, MIN, MAX, AVG.
    • GROUP BY and HAVING Clause.
    • Using GROUP BY with ROLLUP and CUBE.
  • Module 9: Joins and Set Operations
    • Types of Joins: Inner, Outer, Cross, Self.
    • Subqueries and Set Operations (UNION, INTERSECT, EXCEPT).
  • Module 10: Data Integrity
    • Entity Integrity.
    • Domain Integrity.
    • Referential Integrity.
    • Types of Constraints.
  • Module 11: Working with Constraints
    • Unique.
    • Not NULL.
    • Primary Key.
    • CHECK and Foreign Key Constraints.
  • Module 12: Implementing Views
    • Creating, Altering, and Dropping Views.
    • Advantages of Views.
    • Advanced Options in Views.
  • Module 13: Data Control Language (DCL)
    • Creating Users and Roles.
    • Granting and Revoking Permissions.
  • Module 14: Indexing
    • Clustered and Non-Clustered Indexes.
    • Creating, Dropping, and Understanding Index Structures.
  • Module 15: Writing Transact-SQL (T-SQL)
    • Scripts, Batches, and Variables.
    • Using Temporary Tables.
    • Dynamic SQL and System Functions.
  • Module 16: Stored Procedures and Functions
    • Creating, Executing, and Modifying Procedures.
    • User-Defined Functions.
    • Benefits of Stored Procedures.
  • Module 17: Triggers
    • Creating and Managing Triggers.
    • Types of Triggers (FOR, AFTER, INSTEAD OF).
    • Using ROLLBACK TRAN with Triggers.
  • Module 18: Cursors
    • Creating and Managing Cursors.
    • Types and Advantages of Cursors.
  • Module 19: Transaction Control Language (TCL)
    • Transaction Management and ACID Properties.
    • Isolation Levels and Lock Management.
  • Module 20: Backup and Restore
    • Backing Up and Restoring Databases.
    • Generating and Executing SQL Scripts.
    • Attaching and Detaching Databases.
  • Module 21: Advanced Features
    • Ranking Functions.
    • Using Pivot Tables.
    • Working with XML and BLOB Data Types.
4. Excel:
  • 1. Introduction to Excel for Data Analysis
    • Excel Interface Overview
      • Understanding Ribbons, Menus, and Toolbars
      • Creating and Saving Workbooks
      • Keyboard Shortcuts for Efficiency
    • Basics of Excel
      • Working with Rows, Columns, and Cells
      • Formatting Data (Fonts, Borders, Colors)
      • Using Undo, Redo, and Clipboard Options
  • 2. Excel Formulas and Functions
    • Basic Formulas
      • Understanding Relative and Absolute References
      • Arithmetic Operations (SUM, AVERAGE, COUNT)
    • Intermediate Functions
      • Logical Functions (IF, AND, OR)
      • Lookup Functions (VLOOKUP, HLOOKUP, XLOOKUP)
      • Text Functions (CONCATENATE, LEFT, RIGHT, MID, LEN)
    • Advanced Functions
      • Array Formulas and Dynamic Arrays
      • INDEX and MATCH for Advanced Lookups
      • Using INDIRECT and OFFSET
  • 3. Data Management and Cleaning
    • Sorting and Filtering Data
      • Custom Sort Options
      • Filtering Data with Criteria
    • Data Cleaning Techniques
      • Removing Duplicates
      • Handling Missing Values
      • Text to Columns for Data Parsing
      • Data Validation Rules
    • Using Conditional Formatting
      • Highlighting Cells Based on Rules
      • Creating Custom Conditional Formatting Rules
  • 4. Data Visualization in Excel
    • Creating Charts and Graphs
      • Bar, Line, and Pie Charts
      • Scatter Plots and Bubble Charts
      • Combo Charts
    • Advanced Visualization
      • Using Sparklines for Mini-Charts
      • Waterfall Charts and Histogram Charts
      • Adding Trendlines and Error Bars
    • Formatting and Customizing Charts
      • Adding Titles, Labels, and Legends
      • Adjusting Axes and Gridlines
  • 5. Pivot Tables and Pivot Charts
    • Creating Pivot Tables
      • Understanding Rows, Columns, and Values
      • Grouping Data by Categories
    • Advanced Pivot Table Techniques
      • Using Calculated Fields and Items
      • Creating Slicers for Interactive Filtering
    • Pivot Charts
      • Visualizing Pivot Table Data
      • Formatting and Customizing Pivot Charts
  • 6. Advanced Excel Features for Data Analysis
    • Data Analysis Tools
      • Using Goal Seek for Scenario Testing
      • Solver for Optimization Problems
      • Data Tables for Sensitivity Analysis
    • Working with Large Datasets
      • Handling Millions of Rows
      • Using Excel Tables for Structured Data
      • Applying Filters and Aggregations
    • Integration with Power Query
      • Connecting to External Data Sources
      • Transforming Data with Power Query
  • 7. Macros and VBA for Automation
    • Introduction to Macros
      • Recording and Running Macros
      • Understanding Macro Security
    • VBA Basics
      • Introduction to Visual Basic for Applications
      • Writing and Editing VBA Code
      • Creating User-Defined Functions (UDFs)
    • Automating Tasks with VBA
      • Automating Reports and Dashboards
      • Building Interactive Forms
  • 8. Excel Integration with Other Tools
    • Integration with Python
      • Using OpenPyXL for Excel Manipulation
      • Automating Data Analysis with Pandas
    • Connecting Excel to Databases
      • Importing Data from SQL
      • Using ODBC Connections
  • 9. Real-World Projects
    • Building a Sales Dashboard
      • Summarizing Sales Data with Pivot Tables
      • Visualizing KPIs with Charts
    • Inventory Management Analysis
      • Tracking Stock Levels and Trends
      • Automating Reorder Level Alerts
    • Customer Segmentation
      • Analyzing Demographics with Filters
      • Creating Visual Reports for Insights
5. Latest Gen AI Tools:
  • Introduction to Generative AI Tools
  • AI-Powered Automation for Business
  • Data Analytics using AI
6. ChatGPT & CoPilot: